Statistical Characterization of GPS Signal-In-Space Errors
نویسندگان
چکیده
For most Global Positioning System (GPS) standard positioning service (SPS) users, real-time satellite orbits and clocks are derived from predicted ephemeris and clock parameters in broadcast navigation messages. Broadcast ephemeris and clock errors, the differences between the broadcast orbits/clocks and the truth, account for a dominant portion of signal-in-space (SIS) errors. Traditionally, SIS user range errors (UREs) is assumed to follow a zero-mean normal distribution with standard deviation represented by the broadcast user range accuracy (URA). In addition, advanced receiver autonomous integrity monitoring (ARAIM) may rely on an assumption that UREs of different satellites are uncorrelated. This paper is intended to examine these assumptions and give a thorough characterization of core SIS error behavior based on the statistics of recent data. The radial, alongtrack, and crosstrack ephemeris errors and clock errors are computed by comparing the broadcast ephemerides/clocks with the precise ones, followed by the generation of instantaneous SIS UREs, global-average SIS UREs, and worst-case SIS UREs. Anomalous satellite behaviors are identified and excluded by an outlier filter. Robust statistics techniques are implemented to avoid the impact of statistical outliers. An analysis of long-term stationarity is first carried out to determine the range of useful data. The SIS errors are then characterized with respect to mean and standard deviation, spatial correlation, normality, relation between rms URE and URA, and correlation among different satellites. The results show that mean of SIS errors are nonzero for several satellites; the radial errors, alongtrack errors, and clock errors are relatively strongly correlated; UREs usually have a non-Gaussian distribution; different satellites have different interpretation of URA; and the UREs of different satellites are slightly correlated.
منابع مشابه
GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor
Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...
متن کاملStatistical Characterization of GLONASS Broadcast Clock Errors and Signal-In-Space Errors
With more than 70 navigation satellites around the Earth, global navigation satellite systems (GNSS) users are fascinated to use multiple constellations to enhance positioning availability, accuracy, integrity, continuity, and robustness. As the Russian Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) has fully restored its constellation, not only does a combination of GLONASS and the...
متن کاملA New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment
The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...
متن کاملStatistical Characterization of GLONASS Broadcast Ephemeris Errors
For critical navigation applications such as aircraft approach and landing, there is a general desire to use multi-constellation global navigation satellite systems (GNSS) to enhance availability and reliability. The Russian Global Navigation Satellite System (GLONASS) is so far the only other constellation nearly as developed as the Global Positioning System (GPS). A thorough characterization ...
متن کاملDelay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering
Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011